Hi – I’m reading “Humanity in a Creative Universe” by Stuart A. Kauffman and wanted to share this quote with you.

In the hard sciences, which can often feel out of grasp for many lay readers, there are “great thinkers” who go far beyond the equations, formulas, and research. Minds such as Stephen Hawking philosophize about the functions and nature of the universe, the implications of our existence, and other impossibly fascinating, yet difficult questions. Stuart A. Kauffman is one of those great thinkers. He has dedicated his lifetime to researching “complex systems” at prestigious institutions and now writes his treatise on the most complex system of all: our universe.

A recent Scientific American article claims that “philosophy begins where physics ends, and physics begins where philosophy ends,” and perhaps no better quote sums up what Kauffman’s latest book offers. Grounded in his rigorous training and research background, Kauffman is inter-disciplinary in every sense of the word, sorting through the major questions and theories in biology, physics, and philosophy. Best known for his philosophy of evolutionary biology, Kauffman coined the term “prestatability” to call into question whether science can ever accurately and precisely predict the future development of biological features in organisms. As evidenced by the title’s mention of creativity, the book refreshingly argues that our preoccupation to explain all things with scientific law has deadened our creative natures. In this fascinating read, Kauffman concludes that the development of life on earth is not entirely predictable, because no theory could ever fully account for the limitless variations of evolution. Sure to cause a stir, this book will be discussed for years to come and may even set the tone for the next “great thinker.”

Read More

No entailing laws, but enablement in the evolution of the biosphere | Giuseppe Longo, Maël Montévil & Stuart Kauffman

Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phenotypes, niches, ecosystems. We wish to argue that the evolution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon discussing the variability of the very ”contexts of life”: the interactions between organisms, biological niches and ecosystems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of time the “niches” which constitute the boundary conditions on selection. More generally, by the mathematical unprestatability of the “phase space” (space of possibilities), no laws of motion can be formulated for evolution. We call this radical emergence, from life to life. The purpose of this paper is the integration of variation and diversity in a sound conceptual frame and situate unpredictability at a novel theoretical level, that of the very phase space.

Our argument will be carried on in close comparisons with physics and the mathematical constructions of phase spaces in that discipline. The role of (theoretical) symmetries as invariant preserving transformations will allow us to understand the nature of physical phase spaces and to stress the differences required for a sound biological theoretizing. In this frame, we discuss the novel notion of ”enablement”. Life lives in a web of enablement and radical emergence. This will restrict causal analyses to differential cases (a difference that causes a difference). Mutations or other causal differences will allow us to stress that ”non conservation principles” are at the core of evolution, in contrast to physical dynamics, largely based on conservation principles as symmetries. Critical transitions, the main locus of symmetry changes in physics, will be discussed, and lead to ”extended criticality” as a conceptual frame for a better understanding of the living state of matter.

Read More