Why do we need theories? | Giuseppe Longo and Ana M. Soto (2016)

Theories organize knowledge and construct objectivity by framing observations and experiments. The elaboration of theoretical principles is examined in the light of the rich interactions between physics and mathematics. These two disciplines share common principles of construction of concepts and of the proper objects of inquiry. Theory construction in physics relies on mathematical symmetries that preserve the key invariants observed and proposed by such theory; these invariants buttress the idea that the objects of physics are generic and thus interchangeable and they move along specific trajectories which are uniquely determined, in classical and relativistic physics.

In contrast to physics, biology is a historical science that centers on the changes that organisms experience while undergoing ontogenesis and phylogenesis. Biological objects, namely organisms, are not generic but specific; they are individuals. The incessant changes they undergo represent the breaking of symmetries, and thus the opposite of symmetry conservation, a central component of physical theories. This instability corresponds to the changes of the environment and the phenotypes.

Inspired by Galileo’s principle of inertia, the “default state” of inert matter, we propose a “default state” for biological dynamics following Darwin’s first principle, “descent with modification” that we transform into “proliferation with variation and motility” as a property that spans life, including cells in an organism. These dissimilarities between theories of the inert and of biology also apply to causality: biological causality is to be understood in relation to the distinctive role that constraints assume in this discipline. Consequently, the notion of cause will be reframed in a context where constraints to activity are seen as the core component of biological analyses.

Finally, we assert that the radical materiality of life rules out distinctions such as “software vs. hardware.”

Keywords Default state; Mathematical symmetries; Phase space; Biological organization

Read More

The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms | ANA M. SOTO, GIUSEPPE LONGO, Maël Montévil, and CARLOS SONNENSCHEIN (2016)

The principle of inertia is central to the modern scientific revolution. By postulating this principle Galileo at once identified a pertinent physical observable (momentum) and a conservation law (momentum conservation). He then could scientifically analyze what modifies inertial movement: gravitation and friction. Inertia, the default state in mechanics, represented a major theoretical commitment: there is no need to explain uniform rectilinear motion, rather, there is a need to explain departures from it. By analogy, we propose a biological default state of proliferation with variation and motility. From this theoretical commitment, what requires explanation is proliferative quiescence, lack of variation, lack of movement. That proliferation is the default state is axiomatic for biologists studying unicellular organisms. Moreover, it is implied in Darwin’s “descent with modification”. Although a “default state” is a theoretical construct and a limit case that does not need to be instantiated, conditions that closely resemble unrestrained cell proliferation are readily obtained experimentally. We will illustrate theoretical and experimental consequences of applying and of ignoring this principle.

Read More

Toward a theory of organisms: Three founding principles in search of a useful integration | ANA M. SOTO, GIUSEPPE LONGO, PAUL-ANTOINE MIQUEL, MAËL MONTEVIL, MATTEO MOSSIO, NICOLE PERRET, ARNAUD POCHEVILLE, and CARLOS SONNENSCHEIN

Organisms, be they uni- or multi-cellular, are agents capable of creating their own norms; they are continuously harmonizing their ability to create novelty and stability, that is, they combine plasticity with robustness. Here we articulate the three principles for a theory of organisms proposed in this issue, namely: the default state of proliferation with variation and motility, the principle of variation and the principle of organization. These principles profoundly change both biological observables and their determination with respect to the theoretical framework of physical theories. This radical change opens up the possibility of anchoring mathematical modeling in biologically proper principles.

Read More

No entailing laws, but enablement in the evolution of the biosphere | Giuseppe Longo, Maël Montévil & Stuart Kauffman

Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phenotypes, niches, ecosystems. We wish to argue that the evolution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon discussing the variability of the very ”contexts of life”: the interactions between organisms, biological niches and ecosystems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of time the “niches” which constitute the boundary conditions on selection. More generally, by the mathematical unprestatability of the “phase space” (space of possibilities), no laws of motion can be formulated for evolution. We call this radical emergence, from life to life. The purpose of this paper is the integration of variation and diversity in a sound conceptual frame and situate unpredictability at a novel theoretical level, that of the very phase space.

Our argument will be carried on in close comparisons with physics and the mathematical constructions of phase spaces in that discipline. The role of (theoretical) symmetries as invariant preserving transformations will allow us to understand the nature of physical phase spaces and to stress the differences required for a sound biological theoretizing. In this frame, we discuss the novel notion of ”enablement”. Life lives in a web of enablement and radical emergence. This will restrict causal analyses to differential cases (a difference that causes a difference). Mutations or other causal differences will allow us to stress that ”non conservation principles” are at the core of evolution, in contrast to physical dynamics, largely based on conservation principles as symmetries. Critical transitions, the main locus of symmetry changes in physics, will be discussed, and lead to ”extended criticality” as a conceptual frame for a better understanding of the living state of matter.

Read More