The immune system is traditionally conceptualized as a host-defense network specialized for pathogen detection and elimination. However, converging evidence from evolutionary biology, resolution physiology, immunometabolism, circadian regulation, tissue specialization, and neuroimmunology suggests that this framing is incomplete. Here we propose that the immune system operates as a distributed, energy-constrained control architecture that regulates organismal viability across molecular, tissue, and behavioral scales.
Across species, immune systems converge on a recurrent functional grammar — boundary maintenance, perturbation detection, nonlinear amplification, effector deployment, active resolution, memory, metabolic integration, and temporal modulation — indicating a constrained evolutionary solution to maintaining cooperative biological order under adaptive threat. When formalized as a control system, immune competence depends not solely on activation magnitude but on the coordinated balance of gain, damping, metabolic flexibility, and circadian structure.
Structured immune–neural signaling demonstrates that inflammatory dynamics are continuously integrated into organism-level state regulation. Sickness behavior and inflammation-associated affective shifts are interpreted not as incidental side effects, but as coordinated behavioral policy adjustments under altered physiological constraint. We advance the hypothesis that affective states function as low-dimensional control representations of organismal viability shaped in part by immune-derived signals.
This framework reinterprets chronic inflammatory disorders, autoimmunity, cancer immune escape, and subsets of mood syndromes as stability failures within a coupled immune–neural control architecture. By synthesizing evolutionary immunology, systems biology, and neuroimmune integration, we outline a testable research program centered on resolution efficiency, stability basin dynamics, metabolic flexibility, and temporal regulation.










