This is a revision of Freud’s “Project for a Scientific Psychology: General Scheme.” It updates the original, sentence for sentence where possible, in light of contemporary neuroscientific knowledge. The principle revisions are as follows. (1) Freud’s conception of “quantity” (the precursor of “drive energy”) is replaced by the concept of “free energy.” This is the energy within a system that is not currently performing useful work. (2) Shannon’s conception of “information” is introduced, where information is equivalent to unpredictability, and is formally equivalent to “entropy” in physics. (3) In biology, the fundamental purpose of “homeostasis” is to resist entropy – i.e., to increase predictability. Homeostasis turns out to be the underlying mechanism of what Freud called the “principle of neuronal inertia.” (4) Freud’s conception of “contact barriers” (the physical vehicles of memory) is linked with the modern concepts of consolidation/reconsolidation, whereby more deeply consolidated predictions are less plastic (more resistant to change) than freshly consolidated ones. (5) Freud’s notion of sensory “excitation” is replaced with the concept of “prediction error,” where only that portion of sensory input which is not explained by outgoing predictions is propagated inwards for cognitive processing. (6) Freud’s conception of “bound” (inhibited) cathexis, the main vehicle of his “secondary process” and voluntary action is equated with the buffering function of “working memory”; and “freely mobile” cathexis (the vehicle of Freud’s “primary process”) is equated with the automatized response modes of the nondeclarative memory systems. (7) Freud’s notion of ω (the system “consciousness”) is replaced by the concept of “precision” modulation, also known as “arousal” and “postsynaptic gain.”
Tag: Predictive Coding
The Sense of Should: A Biologically-based Framework for Modeling Social Pressure. | Jordan E. Theriault, Liane Youn and Lisa Feldman Barrett
Highlights
• We develop a model of social pressure, based on the metabolic costs of information.
• We propose that conformity regulates the predictability of social environments.
• We suggest that the experience of obligation stems from anticipated uncertainty.
• We integrate disparate theories of mental inference with an embodied account.
• We discuss the emergent consequences of others’ expectations motivating behavior.
Keywords: Allostasis | Predictive Coding | Evolution | Metabolism | Affect | Social Pressure
Abstract
What is social pressure, and how could it be adaptive to conform to others’ expectations? Existing accounts highlight the importance of reputation and social sanctions. Yet, conformist behavior is multiply determined: sometimes, a person desires social regard, but at other times she feels obligated to behave a certain way, regardless of any reputational benefit — i.e. she feels a sense of should. We develop a formal model of this sense of should, beginning from a minimal set of biological premises: that the brain is predictive, that prediction error has a metabolic cost, and that metabolic costs are prospectively avoided. It follows that unpredictable environments impose metabolic costs, and in social environments these costs can be reduced by conforming to others’ expectations. We elaborate on a sense of should’s benefits and subjective experience, its likely developmental trajectory, and its relation to embodied mental inference. From this individualistic metabolic strategy, the emergent dynamics unify social phenomenon ranging from status quo biases, to communication and motivated cognition. We offer new solutions to long-studied problems (e.g. altruistic behavior), and show how compliance with arbitrary social practices is compelled without explicit sanctions. Social pressure may provide a foundation in individuals on which societies can be built.